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Goal

(I) We summarise the key properties of algebraic groups needed
for the study of automorphic forms. Full proofs of these
results take many pages, thus we will focus on the
statements (see the canonical books of Borel, Humphreys,
Springer and the excellent notes of Conrad for proofs). In
this lecture we only deal with the absolute theory, i.e. over
an algebraically closed field.

(II) We will use varieties ”à la grand papa”. I will assume some
familiarity with basic algebraic geometry, but we will review
the relevant points. Let K be an algebraically closed field
of characteristic 0 (many statements to come will fail or be
more difficult to prove in positive characteristic!), e.g.
K = C.
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Affine varieties

(I) An affine sub-variety of Kn (or Zariski closed subset) is
the set of solutions of some polynomial equations with
coefficients in K .

(II) Affine varieties over K form a category, morphisms
f : X → Y (with X ⊂ Kn,Y ⊂ Km) being maps of the form
f (x) = (P1(x), ...,Pm(x)) with Pi polynomial functions on
X .
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Affine varieties

(I) Sending X to the K -algebra K [X ] = Homvar (X ,K ) of
polynomial (or regular) functions on X gives an
anti-equivalence between the category of affine varieties over
K and that of reduced finitely generated K -algebras, and
evaluation at points of X gives a bijection

X ' HomK−alg(K [X ],K ).

If IX ⊂ K [T1, ...,Tn] is the ideal of polynomials vanishing on
X , then (for X ⊂ Kn)

K [X ] ' K [T1, ...,Tn]/IX .

(II) If S ⊂ X is a subset, its Zariski closure S̄ is the smallest
Zariski closed subset of X containing S . A point x ∈ X is in
S̄ if and only if f (x) = 0 for any f ∈ K [X ] vanishing on S .
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Affine varieties

(I) The variety X is called connected if X is not the disjoint
union of two proper Zariski closed subsets. Equivalently,
K [X ] has no nontrivial idempotent. The next result is highly
nontrivial.

Theorem Let X ⊂ Cn be an affine variety. X is connected
for the Zariski topology if and only if X is connected for the
classical topology.



Algebraic groups

(I) We can see (via g → (1/ det(g), g)) GLn(K ) as the affine
sub-variety

GLn(K ) ' {(t,X ) ∈ K ×Mn(K )| t det(X ) = 1}

of Kn2+1 ' K ×Mn(K ). An algebraic subgroup of
GLn(K ) is a subgroup of GLn(K ) which is Zariski closed in
Kn2+1, i.e. a subgroup of GLn(K ) defined by polynomial
equations in the coefficients and the inverse of the
determinant of the matrices.

(II) The term algebraic group refers to an algebraic subgroup of
some GLn(K ). More conceptually, these are the group
objects in the category of affine varieties over K .

(III) Convention: by subgroup of an algebraic group G we wean
a Zariski closed subgroup of G .
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Algebraic groups

(I) Here are a few very basic, but already not at all trivial results:

Theorem (Borel, Chevalley, Zariski)
a) If f : G → H is a morphism of algebraic groups, then
f (G ) is Zariski closed in H (hence an algebraic group!) and
f is an isomorphism if it is bijective.

b) If G is an algebraic group, then the derived group Gder of
G is Zariski closed in G , thus an algebraic group. If H is a
Zariski closed normal subgroup of G , then G/H is an
algebraic group.

If G is an algebraic group, its neutral component G 0 is the
connected component containing 1 ∈ G . It is a normal
closed subgroup of G , of finite index.



Examples of algebraic groups: tori

(I) A key example of algebraic group is the group Gn
m of diagonal

matrices in GLn(K ). An algebraic group isomorphic to Gn
m

is called a torus of rank n. The character group functor

X : {K − tori} → {finite free Z−modules},

X (T ) = Homalg.gr(T ,Gm)

induces an anti-equivalence between K -tori and finite free
Z-modules. A quasi-inverse associates to a finite free
Z-module M the torus T = Homgr(M,K ∗).

(II) One checks that Endalg.gr(Gm) = Z (where n ∈ Z
corresponds to the character t → tn of K ∗ = Gm). Letting
X∗(T ) := Homalg.gr(Gm,T ) be the group of cocharacters
of T , there is a canonical perfect duality,

〈 . 〉 : X (T )× X∗(T )→ Endalg.gr(Gm) = Z, 〈u, v〉 = u ◦ v .
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More examples of algebraic groups

(I) Other standard examples of algebraic groups include
SLn(K ), orthogonal groups associated to quadratic spaces
over K , symplectic groups (attached to non-degenerate
alternating forms) etc.

(II) Somewhat more exotic but very important: if D is a finite
dimensional division algebra over K , then D∗ (the group of
units of D) is an algebraic group. This will appear a lot in
the second semester, when D is a quaternion algebra. One
can also consider the units with reduced norm 1 and get
another algebraic group.

(III) Finite groups are algebraic!
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Unipotent/solvable groups

(I) Another key example is the subgroup Un(K ) of upper
triangular unipotent matrices in GLn(K ). An algebraic group
isomorphic to a subgroup of Un(K ) is called an unipotent
group. If G ⊂ GLn(K ) is an algebraic subgroup, then G is
unipotent if and only if all matrices in G are unipotent, or
equivalently G can be conjugated to land in Un(K ).

(II) Yet another fundamental example is the subgroup Bn(K ) of
upper triangular matrices in GLn(K ). It is the semi-direct
product of the diagonal torus Dn(K ) ' Gn

m and of Un(K )
and it is a solvable connected group.

Theorem (Lie-Kolchin) Any connected solvable subgroup
G ⊂ GLn(K ) has a conjugate contained in Bn(K ).
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Borel subgroups
(I) A maximal connected solvable (algebraic) subgroup B of an

algebraic group G is called a Borel subgroup. Their study is
at the basis of almost all key results about algebraic groups.
Some of the main results of the theory are summarised in the
following hard theorem:

Theorem (Borel) Let G be a connected algebraic group.
a) All maximal tori and all Borel subgroups in G are
G -conjugate.

b) G is the union of all of its Borel subgroups. The union of
all maximal tori is the set of semisimple elements of G , i.e.
those g ∈ G which are diagonalisable matrices under some
(equivalently any) embedding G ⊂ GLn(K ).

c) G is unipotent if and only if G has no nontrivial torus,
and G is a torus if and only if any g ∈ G is semisimple.



Algebraic groups and Lie algebras

(I) Any algebraic group G ⊂ GLn(K ) is a smooth variety and
the tangent space to G at 1 has a natural structure of K -Lie
algebra. This is the Lie algebra g of G . If I ⊂ K [GLn(K )] is
the ideal of G , then

g = {A ∈ Mn(K )| df
dt
|t=0f (1 + tA) = 0, ∀f ∈ I},

with Lie bracket [X ,Y ] = XY − YX .



Algebraic groups and Lie algebras

(I) In practice one uses the following description to actually
compute g:

g = ker(G (K [ε])→ G (K )),

where K [ε] = K [T ]/T 2 is the ring of dual numbers and
G (K [ε])→ G (K ) is induced by the map sending T to 0.

(II) If K = C and G ⊂ GLn(C) is an embedding, then G (K ) is
naturally a Lie group and g is the Lie algebra of that group:

g = {X ∈ Mn(C)| etX ∈ G ,∀t ∈ R}.
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Representations of algebraic groups

(I) A finite dimensional representation of an algebraic group
G is a finite dimensional K -vector space V with a morphism
of algebraic groups G → GL(V ).

(II) A very important example is the adjoint representation
(say G ⊂ GLn(K ))

Ad : G → GL(g), Ad(g)(X ) = gXg−1.

Its tangent map at 1 is

ad = d(Ad) : g→ End(g), ad(X )(Y ) = [X ,Y ] := XY−YX .

(III) If V is a finite dimensional representation of a torus T , then
V = ⊕a∈X (T )Va, where Va = {v ∈ V | t.v = a(t)v , ∀t ∈ T}
is the a-weight space. We say that a ∈ X (T ) is a weight
of V if Va 6= 0.
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Representations of algebraic groups
(I) More generally, a K -linear action of G on a K -vector space

V is called algebraic (or simply a representation of G ) if V
is a union of finite dimensional G -representations.

(II) Such infinite dimensional representations of G arise from
actions of G on varieties X , i.e. abstract actions for which
the natural map G × X → X is a morphism of varieties.
Then G acts on K [X ] by g .f (x) = f (g−1x).

Theorem If G acts on a variety X , then K [X ] is a
representation of G and the action of G on X can be
linearized: there is a closed embedding X ⊂ Kn (for some n)
and a representation ρ : G → GLn(K ) such that
g .x = ρ(g)(x) for g ∈ G , x ∈ X .

In particular K [G ] is a representation of G , via
g .f (g ′) = f (g−1g ′) (or via g .f (g ′) = f (g ′g)...).
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Reductive groups

(I) We write Repalg(G ) for the category of representations of G
and Irr(G ) for set of isomorphism classes of irreducible
objects of Repalg(G ). All V ∈ Irr(G ) are finite dimensional
(by definition!).

(II) We say that G is reductive if every V ∈ Repalg(G ) is a
direct sum of irreducible representations, or equivalently if
any G -stable subspace of V has a G -stable complement. Yet
another equivalent condition is that the natural evaluation
map is an isomorphism⊕

π∈Irr(G)

π ⊗K HomG (π,V ) ' V .
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Reductive groups

(I) It follows easily from the last point that when G is reductive
the functor V → V G is exact on Repalg(G ) and

K [G ] '
⊕

π∈Irr(G)

π ⊗K π
∗.

Conversely, if K [G ] is semi-simple, or equivalently if the
above isomorphism holds, then G is reductive.

(II) This should ring a bell: it looks very similar to the case of
finite groups, more generally of compact groups! We will see
that this is not a coincidence...
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Reductive groups

(I) Here is an extremely beautiful characterisation of reductive
groups:

Theorem (Hilbert, Popov) An algebraic group G is
reductive if and only if K [X ]G is a finitely generated
K -algebra for any action of G on an affine variety X .

This allows one to construct quotients for actions of
reductive groups G on affine varieties X : since K [X ]G is
finitely generated and reduced, it is the algebra of regular
functions on some affine variety X//G (called the categorical
or GIT quotient of X by G ). The inclusion K [X ]G → K [X ]
gives rise to a G -invariant surjective morphism
π : X → X//G , identifying X//G with the set of closed
orbits of elements of X .



Reductive groups

(I) More precisely, if Y ,Z are closed disjoint sub-varieties of X
stable under G , then we can find f ∈ K [X ]G vanishing on Y
and equal to 1 on Z . It follows that each fibre of πX
contains a unique closed G -orbit.

(II) If H is a closed and reductive subgroup of an algebraic
group, then H acts on G by h.g = gh−1,and the fibres of
πG : G → G//H are the H-orbits in G , thus π gives a
bijection G/H ' G//H, endowing G/H with a structure of
affine variety.
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Examples of reductive groups

(I) Finite groups are reductive, so are tori. GLn(K ) and SLn(K )
are reductive, but this is not obvious.

(II) It is not hard to show that G is reductive if and only if G 0 is
reductive, that the product of reductive groups is reductive.

(III) Reductivity is preserved under passage to normal (Zariski
closed) subgroups and to quotients by such subgroups, but
not stable under passage to Zariski closed subgroups
(otherwise any algebraic group would be reductive...).
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The ”correct” definition of reductive groups
(I) A unipotent group is not reductive, unless it is trivial: its

only irreducible representation is the trivial one.

(II) Any algebraic group has a largest unipotent normal
subgroup, called its unipotent radical. One implication in
the following deep theorem follows from the previous remark,
the other one is much harder and uses many key structural
results about reductive groups:

Theorem An algebraic group G is reductive if and only if its
unipotent radical is trivial.

In positive characteristic the right definition of reductivity is
the triviality of the unipotent radical. With that definition,
everything that we will say about the structure and
classification of reductive groups will work in positive
characteristic.
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Dévissage of algebraic groups

(I) The next deep theorem of Mostow (false in positive
characteristic) reduces the study of general algebraic groups
to unipotent and reductive groups:

Theorem (Mostow) Any algebraic group G with unipotent
radical U is the semi-direct product of U and of a reductive
group H, which is unique up to conjugacy by U.

Such a group H is called a Levi subgroup of G .



Dévissage of reductive groups

(I) A reductive group G is called semisimple if G has finite
center. A key example of semisimple group is SLn(K ).
Others are PGLn(K ), symplectic groups, special orthogonal
groups, etc. The next result is not at all trivial:

Theorem Let G be a reductive group.
a) Gder is a semisimple group and Z (G )0 is a torus.

b) If G is connected, then Gder is perfect, i.e. equal to its
own derived group, and G = Z (G )0Gder, the intersection
being finite (by a)).

In particular we have X (G ) = {1} for any connected
semisimple group G , where for any algebraic group G we let

X (G ) = Homalg.gr(G ,Gm).



Root data

(I) One of the miracles of the theory (due to Cartan, Borel,
Chevalley, Demazure, etc) is that one can classify completely
reductive groups in terms of simple combinatorial data. This
is a very deep theorem.

(II) From now on we fix a connected reductive group G and a
maximal torus T ⊂ G , i.e. a torus in G not strictly
contained in any other torus of G . Let X = X (T ) be the
character group of T . Then ZG (T ) = T (not easy!) and the
adjoint action of T on g = Lie(G ) diagonalizes and gives a
decomposition

g = t⊕⊕a∈Φga,

for some finite (maybe empty) subset
Φ = Φ(G ,T ) ⊂ X K {0}. So Φ consists of the nontrivial
weights of this representation of T on g.
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Root data

(I) The corresponding weight space

ga = {Z ∈ g|Ad(t)(Z ) = a(t)Z , ∀t ∈ T}

is called the a-root space and the elements of Φ are called
roots of (G ,T ). The name comes from the equality

det(u•id−Ad(t)) = (u − 1)dimT
∏
a∈Φ

(X − a(t))dim ga .



Root data

(I) One of the key nontrivial results of the theory is the
following result (in which −a is the character t → 1/a(t)):

Theorem For any a ∈ Φ we have Qa ∩ Φ = {±a},
dim ga = 1 and

• there is a unique closed subgroup Ua ⊂ G (the a-root
group) normalized by T and such that Lie(Ua) = ga.

• there is a unique a∨ ∈ X∗(T ) such that 〈a, a∨〉 = 2 and
such that sa(x) := x − 〈x , a∨〉a permutes Φ.

The set Φ∨ = {a∨| a ∈ Φ} ⊂ X∗(T ) is called the set of
coroots of (G ,T ).



Root data

(I) Where does a∨ come from? A fairly hard theorem ensures
the existence of a homomorphism of algebraic groups
ϕa : SL2(K )→ G , uniquely determined up to T -conjugacy,
such that ϕa sends the diagonal torus in SL2(K ) into T and
induces isomorphisms

ϕa :

(
1 ∗
0 1

)
' Ua, ϕa :

(
1 0
∗ 1

)
' U−a.

The following cocharacter a∨ of T is independent of the
choice of ϕa:

a∨(x) = ϕa

((
x 0
0 1/x

))
.

Moreover, one checks that 〈a, a∨〉 = 2.



Root data

(I) OK, all this deserves some examples. Take G = SL2(K )

with the diagonal torus T = {x → λ(x) =

(
x 0
0 1/x

)
}, then

Ad(λ(x))e = x2e,Ad(λ(x))f = x−2f ,

where

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

thus the roots are ±a, with a(

(
x 0
0 1/x

)
) = x2. The root

spaces are ga =

(
0 ∗
0 0

)
, g−a =

(
0 0
∗ 0

)
, the root groups

are Ua =

(
1 ∗
0 1

)
,U−a =

(
1 0
∗ 1

)
, and a∨(x) =

(
x 0
0 1/x

)
.



Root data

(I) Now take G = GLn(K ) with the diagonal torus
T = {diag(x1, ..., xn)| xi ∈ K∗}. Then

X = X (T ) = ⊕n
i=1Zei , ei (diag(x1, ..., xn)) := xi

and (x is in position i)

X∗(T ) = ⊕n
i=1Ze∨i , e∨i (x) := diag(1, ..., 1, x , 1, ..., 1).

The set of roots is then (exercise)

Φ = {ei − ej | 1 ≤ i 6= j ≤ n}

the root spaces are gei−ej = K •Eij and (ei − ej)
∨ = e∨i − e∨j .



Root data

(I) Upshot: (G ,T ) gives rise to a root datum, i.e. a 4-tuple
(X ,Φ,X∨,Φ∨) together with a (necessarily uniquely
determined) bijection Φ→ Φ∨, a→ a∨, where:

• X ,X∨ are finite free Z-modules, together with a perfect
pairing 〈 , 〉 : X × X∨ → Z.

• Φ ⊂ X K {0} and Φ∨ ⊂ X∨ K {0} are finite subsets, stable
under a→ −a, satisfying 〈a, a∨〉 = 2 for a ∈ Φ, and such
that the map sa : X → X , sa(x) = x − 〈x , a∨〉a permutes Φ
and sa∨ : X∨ → X∨, sa∨(λ) = λ− 〈a, λ〉a∨ permutes Φ∨.
The root datum is called reduced if Qa ∩ Φ = {±a} for all
a ∈ Φ.



Root data

(I) Here’s now the mindblowing theorem (which actually holds
in positive characteristic as well):

Theorem (Chevalley, Demazure) There is a canonical
bijection

{reductive groups over K}/' → {reduced root data}/ ' .

If we exchange X and X∨, as well as Φ and Φ∨, we get a
new root datum, to which the theorem associates a reductive
group (up to isomorphism) G∨, called the Langlands dual
group of G .



Root data

(I) Somewhat more precisely: any reduced root datum is
isomorphic to the one of a pair (G ,T ), and any isomorphism
between the root data of (G ,T ) and (G ′,T ′) arises from an
isomorphism (G ,T ) ' (G ′,T ′), unique up to the conjugacy
action of T and T ′. Thus the reduced datum RD(G ,T ) of a
pair (G ,T ) determines the pair uniquely up to isomorphism.



Root data

(I) Any root datum (X ,Φ,X∨,Φ∨) gives rise to an abstract
root system(V ,Φ), where V = Q•Φ ⊂ XQ := X ⊗Z Q.

(II) This simply means that Φ is a finite spanning subset of V ,
not containing 0 and such that for any a ∈ Φ there is a linear
form l ∈ V ∗ such that l(a) = 2, l(Φ) ⊂ Z and the reflection
sa(x) = x − l(x)a permutes Φ. The root system is called
reduced if Qa ∩ Φ = {±a} for a ∈ Φ.

(III) Any root system (Φ,V ) has an associated Weyl group
W (Φ), a finite subgroup of GL(V ) generated by the sa for
a ∈ Φ.
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Root data

(I) If Φ = Φ(G ,T ) for some pair (G ,T ), then

Z (G ) = ∩a∈Φ ker(a)

and so G is semisimple if and only if Φ spans XQ, in which
case (Φ,XQ) is a root system, with Weyl group

W (Φ) ' NG (T )/T .

We call this W (G ,T ) or simply W (G ) (all W (G ,T ) are
isomorphic to each other), the Weyl group of G . For
instance W (GLn(K )) ' Sn.

(II) For a general connected reductive G there is a bijection
between maximal tori in G and Gder, inducing a bijection
between sets of roots and an isomorphism of Weyl groups.
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Root data

(I) Since root data encode all the information about the group,
they should also encode information about Borel subgroups.
This goes as follows. For any Borel subgroup B containing
the fixed maximal torus T , T acts on b = Lie(B), giving rise
to a decomposition

b = t⊕⊕a∈Φ(B,T )ga

for some subset Φ(B,T ).

(II) The subset Φ+ = Φ(B,T ) of Φ has the property that
Φ = Φ+

∐
−Φ+ and Φ+ is closed, in the sense that

a + b ∈ Φ+ whenever a, b, a + b ∈ Φ and a, b ∈ Φ+. We call
such subsets Φ+ systems of positive roots.
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Reductive groups in terms of combinatorial data

(I) For any reduced root system (Φ,V ) the systems of positive
roots are exactly the subsets of the form
Φ+ = {a ∈ Φ| l(a) > 0} for some l ∈ V ∗ not vanishing on
any a ∈ Φ and W (Φ) permutes them simply transitively.

(II) The key theorem for reductive groups:

Theorem For a connected reductive group G with a
maximal torus T and Φ = Φ(G ,T ), the map B → Φ(B,T )
gives a bijection between Borel subgroups of G containing T
and systems of positive roots in Φ. The Weyl group of
(G ,T ) permutes these sets simply transitively.

If Φ+ is a system of positive roots, the associated Borel
subgroup is the subgroup generated by T and by the Ua for
a ∈ Φ+.



Reductive groups in terms of combinatorial data

(I) For any reduced root system (Φ,V ) the systems of positive
roots are exactly the subsets of the form
Φ+ = {a ∈ Φ| l(a) > 0} for some l ∈ V ∗ not vanishing on
any a ∈ Φ and W (Φ) permutes them simply transitively.

(II) The key theorem for reductive groups:

Theorem For a connected reductive group G with a
maximal torus T and Φ = Φ(G ,T ), the map B → Φ(B,T )
gives a bijection between Borel subgroups of G containing T
and systems of positive roots in Φ. The Weyl group of
(G ,T ) permutes these sets simply transitively.

If Φ+ is a system of positive roots, the associated Borel
subgroup is the subgroup generated by T and by the Ua for
a ∈ Φ+.



Reductive groups in terms of combinatorial data

(I) For instance, for G = GLn(K ) the upper triangular Borel
subgroup corresponds to the system of positive roots
{ei − ej | i < j} (note that the root system of G lives in the
vector space {v = (v1, ..., vn) ∈ Qn|

∑
vi = 0}).



Root systems

(I) Any reduced system of positive roots Φ+ has a unique base
(or system of simple roots) ∆, i.e. a subset of Φ which is
a basis of V and such that any root a can be written
a =

∑
b∈∆ nbb with nb integers of the same sign. We recover

Φ+ from ∆ as those linear combinations in which all nb ≥ 0.

(II) Actually ∆ consists of those roots in Φ+ which cannot be
expressed as the sum of two roots in Φ+, Φ = ∪w∈∆W .∆
(where W is the Weyl group) and W is generated by sa with
a ∈W , and G is generated by T and the Ua for a ∈ ∆.
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Compactness and reductivity

(I) We start by observing the following easy, but crucial result:

Theorem The Zariski closure of any compact subgroup of
GLn(C) is reductive.

Let K ⊂ GLn(C) and G the Zariski closure of K . If V is a
finite dimensional algebraic representation of G , by the
unitary trick there is a hermitian inner product on V
invariant under K . Take a subspace W of V stable under G ,
then W⊥ is stable under K . Since the representation is
algebraic and K is Zariski dense, W⊥ is stable under G and
V is semisimple, thus G is reductive!



Compactness and reductivity

(I) Using the above theorem and the polar decomposition, we
are able to prove:

Theorem GLn(C) is reductive.

(II) Consider the Cartan involution

θ : GLn(C)→ GLn(C), x → (x∗)−1,

where x∗ is the complex conjugate of the transpose of x .
The induced map on Lie algebras is still denoted
θ : Mn(C)→ Mn(C),X → −X ∗. Note that

GLn(C)θ=1 = U(n) = {g ∈ GLn(C)| gg∗ = 1}

is compact and Mn(C)θ=−1 is the space of hermitian
matrices.
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Compactness and reductivity

(I) The classical polar decomposition asserts that the map

U(n)×Mn(C)θ=−1 → GLn(C), (k ,X )→ k exp(X )

is a homeomorphism (even diffeomorphism).

(II) We claim that U(n) is Zariski dense in GLn(C), i.e. a
polynomial function f ∈ C[GLn(C)] vanishing on U vanishes
everywhere. By the polar decomposition we need to show
that f (k exp(X )) = 0 for k ∈ U(n) and X hermitian. But
the map z → f (k exp(zX )) is holomorphic and vanishes on
iR since exp(iRX ) ⊂ U(n), thus it is the zero map and so
f (k exp(X )) = 0.
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Compactness and reductivity

(I) An algebraic subgroup G ⊂ GLn(C) is called self-adjoint if
G is stable under g → g∗, i.e. under θ.

Theorem If an algebraic group G ⊂ GLn(C) is the Zariski
closure of some compact subgroup K ⊂ GLn(C), then G is
conjugated to a self-adjoint group.

By conjugating G , we may assume that K ⊂ U(n), and we
will prove that G is self-adjoint. Pick g ∈ G and
f ∈ C[GLn(C)], we want to show that f (g∗) = 0. But f
vanishes on G , thus on K , and f (g∗) = f (g−1) = 0 for
g ∈ K . By Zariski density of K we obtain f (g∗) = 0 for
g ∈ G .



Compactness and reductivity

(I) We will prove now the converse of the previous theorem. So
let G be self-adjoint and let θ : G → G be the restriction of
the Cartan involution, and θ : g = Lie(G )→ g its derivative.
Letting

p = gθ=−1, k = gθ=1,

we have
g = p⊕ k.

(II) Let K = G θ=1, a compact subgroup of G (closed in U(n)
with Lie(K ) = gθ=1 = k and

p = ik = iLie(K ).
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Compactness and reductivity

(I) The fundamental result is then:

Theorem (Cartan, Chevalley) For G as above the map

K × p→ G , (k ,X )→ k exp(X )

is a homeomorphism (even a diffeomorphism) and K is a
maximal compact subgroup of G , Zariski dense in G .

The decomposition G = K exp(p) is called the Cartan
decomposition. It follows from it that G = KG 0, i.e. K
meets each connected component of G .
The tricky point in the proof is proving that if
g = k exp(X ) ∈ G , with k ∈ U(n) and X hermitian, then
k ∈ K and X ∈ p. It suffices to check that X ∈ p, and
actually that etX ∈ G for all t ∈ R.



The Cartan-Chevalley-Mostow theorem

(I) Since G is stable under θ, we have θ(g) = ke−X ∈ G , thus
e2X ∈ G and so e2nX ∈ G for all n ∈ Z. Pick a polynomial P
vanishing on G , then P(e2nX ) = 0 for all n ∈ Z, and an easy
(but great!) exercise shows that P(etX ) = 0 for all t ∈ R.
Varying P yields etX ∈ G for all t ∈ R.

(II) If L is a compact subgroup of G containing K strictly, by the
Cartan decomposition there is X ∈ p nonzero with eX ∈ L,
but then ekX stay in the compact set L for k ∈ Z, impossible
(diagonalize X !). Thus K is a maximal compact subgroup.
The argument that K is Zariski dense in G is identical to the
one for GLn(C).
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What is an algebraic group?

(I) Here comes the amazing theorem:

Theorem (Cartan, Chevalley, Mostow) For any reductive
group G ⊂ GLn(C) there is g ∈ GLn(C) such that gGg−1 is
self-adjoint.

Combining everything:

Theorem (Cartan, Chevalley, Mostow) a) The reductive
groups over C are precisely the Zariski closures in GLn(C)
(for some n) of compact subgroups of GLn(C).

b) Any reductive group G has a unique conjugacy class of
maximal compact subgroups K , and K is Zariski dense in G .



What is an algebraic group?

(I) Moreover, restriction to K induces an equivalence of
categories between finite dimensional objects of Repalg(G )
and of Rep(K ) and identifies

C[G ] ' L2(K )K−fin.


